E-ISSN: 2278-3229

LIGHC, Occember 2019 - February 2020; Sec.A; Vol.9, No.1, 034-044. 001: 10.24214/IJGHC/GC/9/1/03444

International Journal of Green and Herbal Chemistry

An International Peer Review E-3 Journal of Sciences

Available online at www.ijghc.com

Section A: Green Chemistry

Research Article

CODEN (USA): IJGHAY

Aniline as Corrosion Inhibitor for Zinc in H₂SO₄ Solutions: Kinetic, Adsorption and Thermodynamic Considerations

R. T. Vashi 1, S. A. Zele 2 and N. I. Prajapati 1*

^{*1}Department of Chemistry, Navyug Science College – Rander Road, Surat, Gujarat, India.

^{*2}B. K. M. Science College, Tithal Road, Valsad, Gujarat, India.

Received: 08 December 2019; Revised: 31 December 2019; Accepted: 08 January 2020

Abstract: The inhibition of the corrosion of zinc in H_2SO_4 acid by aniline has been investigated by using weight loss, temperature effect, kinetic, adsorption and thermodynamic techniques. Corrosion rate increases with the increase in acid concentration and temperature. As inhibitor concentration increases corrosion rate decreases while percentage of inhibition efficiency (I.E.) increases. As temperature increases I.E. decreases. Maximum I.E. of aniline was found up to 83.79 % at 60 mM inhibitor concentration in 0.1 M H_2SO_4 solution. The value of free energy of adsorption (ΔG^0_{ads}), heat of adsorption (Q_{ads}), energy of activation, (E_0), enthalpy of adsorption (ΔH^0_{ads}) and entropy of adsorption (ΔS^0_{ads}) were calculated. The inhibition effect is discussed in view of aniline molecules adsorbed on the metal surface and it obeys Langmuir adsorption isotherm. The results obtained showed that the aniline could serve as an effective inhibitor for corrosion of zinc in H_2SO_4 .

Key words: Zinc, H2SO4, Aniline, Corrosion, Weight loss, Kinetic, Adsorption.